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Fluctuation-dissipation theorem and quantum tunneling with dissipation
at finite temperature
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A reformulation of the fluctuation-dissipation theorem of Callen and WelRhys. Rev83, 34 (1951)] is
presented in such a manner that the basic idea of Feynman Vpanon Phys.(N.Y.) 24, 118 (1963 ] and
Caldeira and LeggefAnn. Phys.(N.Y.) 149 374(1983; Phys. Rev. Lett46, 211(1981)] of using an infinite
number of oscillators to simulate the dissipative medium is realized manifestly without actually introducing
oscillators. If one assumes the existence of a well defined dissipative coefR¢i@ht which depends little on
the temperature in the energy region we are interested in, the spontaneous and induced emissions as well as
induced absorption of these effective oscillators with a correct Bose distribution automatically appear. Com-
bined with a dispersion relation, we reproduce the tunneling formula in the presence of dissipation at a finite
temperature without referring to an explicit model Lagrangian. The fluctuation-dissipation theorem of Callen
and Welton is also generalized to the fermionic dissipat@rfluctuation, which allows a transparent physical
interpretation in terms of second-quantized fermionic oscillators. This fermionic version of the fluctuation-
dissipation theorem may become relevant in the analyses of, for example, fermion radiation from a black
hole and also supersymmetry in the early UnivefS4.063-651X%98)04812-Q

PACS numbe(s): 05.30—d, 03.65—w

[. INTRODUCTION To be specific, for the simplest case of a Hermitiaom-
posite operatorQ, which represents thegenerally compli-
The fluctuation-dissipation theorem, which relates thecated dynamical freedom of the dissipative medium, we
spontaneous fluctuation of “force fields” in thermal equilib- have the relations
rium to irreversible dissipation, provides a basis of statistical
mechanics for irreversible processes that are slightly out of E ﬁ_w
thermal equilibrium. The fluctuation-dissipation theorem has T 2
been formulated by various authors in the pst7]. We
find the formulation by Callen and Weltdi2] to be intu-
itively understandable and appealing. They shoj@dhat a
general form of the fluctuation-dissipation theorem covers a )
wide range of phenomena such as the Einstein relation for XKE+ho|Q[E)| )
Brownian motion[8], the Nyquist formula for voltage fluc-
tuation in conductorg9], and the Planck distribution for

1+ R(w)

efho_1

=hFdEp(E)f(E)p(E+ﬁw)
0

photons. In Ref[10] it was shown that the effect of dissipa- 2 ho 1

tion on quantum tunnelindor coherenceat zero tempera- — | e 1 R(w)

ture can be formulated on the basis of the fluctuation- i erre—1

dissipation theorem of Callen and Welton, causality, and o

unitarity (i.e., dispersion relationswithout referring to an =hf dEp(E)f(E)p(E-fw)

explicit form of Lagrangian in the manner of Caldeira and 0

Leggett[11]. X (E-#w|Q|E)|, (2)

In this paper we present a reformulation of the
fluctuation-dissipation theorem of Callen and Welton in suchwhere f(E) stands for a normalized Boltzmann factor with
a manner that the basic idea of Feynman and Vefipand  f(E+%w)/f(E)=e #*® and B=1/kT. These formulas are
Caldeira and Leggeftll], which simulates the dissipative remarkable. On the right-hand sides of these relations we
medium by an infinite number of oscillators, becomes manisimply use Fermi's golden rule for the first-order perturba-
fest without actually introducing oscillators. The quantumtion. We recognize the left-hand side of Ed) as represent-
tunneling affinite temperaturds described by this reformu- ing the spontaneous and induced emissions of second-
lation. Although we use the quantum mechanical Fermiquantized bosonic oscillators and the left-hand side of Eg.
golden rule, the spontaneous and induced emissions as wéf) as the standar@induced absorption formula. Moreover,
as induced absorption of these effective oscillators with dhe spectrum of the effective bosonic oscillators is character-
correct Bose distribution automatically appear if one as-ized by the dissipative coefficiefesistanceR(w). In other
sumes the existence of a well defined dissipative coefficienivords, the presence d®(w) necessarily implies the pres-
R(w), which depends little on the temperature in the energyence of effective oscillators characterized Ryw), as was
region we are interested in. emphasized in Ref10]. These expressions realize the basic
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idea of Feynman and Verndf] and Caldeira and Leggett o

[11] without actually introducing an infinite number of oscil- P(w)=277wf dEp(E)f(E)[KE+%iw|V'E)P p(E+hiw)
lators and they naturally satisfy the detailed balancing rela- 0

tion. It is shown that these formuld$) and (2) lead to the —KE—hw|VIE) p(E-—hw)], (8)
conventional fluctuation-dissipation theorem of Callen and

Welton. where we replaced the summation oveby an integration

Combining Eqs(1) and(2) with a dispersion relation, itis over energy.

shown in the text that we can reproduce the tunneling for- Now we assume thaV can be written asv=qQ/2,

mula in the presence of dissipation at finite temperature withnamely, the interaction part in E¢g) is written as

out referring to an explicit model Lagrangian. We also

present a generalization of the Callen-Welton formula for 1 = ot

fermionic dissipation(or fluctuation in contrast to the con- Hi=5(qe”Q+Qge ) ©)

ventional bosonic dissipation such as in E@b. and (2).

These formulas for fermionic dissipation, though somewhain the spirit of linear response approximatianis an infini-

academic at this moment, may become relevant in the analyesimal complex number an@ is a bosonic composite op-

ses of, for example, fermion emission from a black hole orerator, respectively. Here we allow the operafoio be non-

supersymmetric properties in the early Universe. Hermitian in general so that we can readily extend our
formulation to fermionic dissipation later. Then we obtain

Il. REFORMULATION OF THE

FLUCTUATION-DISSIPATION THEOREM TW — ([~
Pw)= 5000 | dEpEN(ENIE+halQTE)F
A. Microscopic power dissipation 0

We first start with a Hamiltonian Xp(E+hw)—[(E-fo|QIE) p(E-fiw)].
H=Ho(Q+V(Qae+V(Qa'e ™, (3 (10
whereH(Q) is the unperturbed Hamiltonian for the dissi- B. Macroscopic dissipative coefficienR(w)

ative medium, which has eigenstates , . L
P g We next define the phenomenological macroscopic dissi-

HolEn)=En|Ep). (4  pative coefficientresistanceR(w) on the basis of the fol-
lowing reasoning10]. We first define an infinitesimatom-

The variableq appearing inV(Q,q) describes the external PleX) coordinate inH, [Eq. (9)],

dynamical freedom that perturbs the dissipative medium. et

The variableq is treated as a classical variable for the mo- q(t)=qe*. (1D
ment.

If the dissipative medium is initially in the stafg,), the
lowest-order transition ratéransition probability per unit
time) is given by Fermi’s golden rule by treating the last two
terms in Eq.(3) as a small perturbation,

The existence of the energy dissipation into the mediLi@h
induced by the external perturbatigft) suggests the pres-
ence of a dissipative forc@eaction acting on the variable
Req(t), which oscillates with frequencey,

2 F=—R(w)Req(t), 12
w= _[|<En+hw|VT|En>|2P(En+ﬁw)
h whereR(w) is a real function. Note thatl,=QReq(t) in

T UE-— ol VIEDR o(E-— o). 5 Eq. (9) for a Hermitian operato®; this shows that Re(t) is
KEn = VIEDE p(Ea—thw)] © a natural classical counter part of tkldermitian quantum
Since the first term stands for the absorption of endrgy  variable g to describe the macroscopic quantum system
and the second term for the emission of enefgy, the Hy(q). The power dissipation per unit time generated by this
energy absorption rate by the dissipative medium is given byhenomenological reactive force is given by

270 (Eq+fio|VIE) p(Ent i) P(w)=—ReFReq(t)
—KEn—iw|VIE)? p(En—fiw)]. (6) =R(w)[Req(t)]?
If the system is initially in thermal equilibrium at tem- s 5 . 5
peratureT, we must average over all initial states, weighting =5 R(w)[Req()]"+[Im q(t)]

the statglE,) by the (normalized Boltzmann factorf(E,),

which satisfies 2

- S-R(w)qq, (13
H(Ep+hio) 1

_e_IBﬁ“) B:_

f(E,) ' kT ™

where the overbar indicates time averaging.
Combining Eqgs(10) and(13), we obtain the microscopic
Then the energy dissipation per unit time is given by expression for the dissipative coefficignésistanceR(w),
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R(w)= = | “dEp(E)HENKE+holQ'|E)F R(-0) =~ [ dEpEIEKE+holQIE)F
X pl(E+h0) ~(E-halQIE)E p(E~ 0] X p(E+hw)~KE-h0|QE) p(E~fiw)]
—Za-e ) [ “aEp@ 1 Ep(ELh) w
<[E+halQIIE)E 14 = e [ AR pENEn(E ho)
X(E+ha|QIE)P. (18)

From this expression dR(w) we find the basic relations
Clearly,R(— w)=R(w) in the case of a Hermitian operator,

Q=Q".

2 ho % For R(—w) with >0, we obtain relations similar to
Py 1+M R(fv)=ﬁjO dEp(E)f(E)p(E+fiw) Egs.(15) and(16),
X(E+AolQIE, (19 2 ho R

;7 eﬁﬁ'w_l (_(U)

2 ho - ~4| d f f f 2

] R(w)zﬁJ’ dE p(E)f(E)p(E—fo) = Ep(E)f(E)p(E+Aw)(E+hw|QE)P,

v 2 eﬂh“)_l 0 0

X (E~ 0| QIE) 16 (19

2 ho 1

Equation(15) is the absorption ok w by Q' and Eq.(16) the 7T 2| efho_q R(=o)

emission ofiw by Q.

These relationg15) and (16) are the prototype of the
fluctuation-dissipation theorem of Callen and Welton. The
fluctuation-dissipation theorem as it stands is a mathematical
identity and contains no physical contents by itself. What is (20)
remarkable is that we obtain highly nontrivial relations in
Egs. (15 and(16) if one assumeghat the dissipative coef-
ficient R(w) depends little on the temperature in the region:
we are interested in. We can recognize the left-hand side dfVelY:

Eq. (15 as standing for the spontaneous and induced emis-
sions of the second-quantized bosonic oscillator with fre- C. Fluctuation-dissipation theorem

quencyw into the dissipative medium, whereas the left-hand  ginqly, we formulate the fluctuation-dissipation theorem
side of Eq.(16) is recognized as theénduced absorption of of Callen and Welton. From Eqg15) and (20) we have,

these oscillators from the dissipative medium at temperaturgga, integration over (and changing the order of integra-
T. Moreover, the spectrum of these effective oscillators isjgn overE and )

precisely specified by the dissipative coefficid®fw). In

particular, there is no effective oscillator af for which N o0 .

R(w) vanishes. These properties realize the basic physical (QQ >Efo (EIQQ'E)p(E)f(E)IE

idea of Feynman and Verndi7] and Caldeira and Leggett

[11], which simulates the dissipative medium by an infinite o % vz
number of oscillators. In our approach this physical idea is = fo dEP(E)f(E){ fo (E+7w|Q'[E)]
realized by a simple application of Fermi’'s golden rule com-

bined with the temperature independence of the dissipative ol g2
coefficientR(w) without actually introducing oscillators. We Xp(Etho)d(fiw)+ fo KE-%w|Q'[E)|
emphasize that these oscillators are effective and such real

1 | dE B (EI0(E-h0I(E-R0lQUE.

Equation(19) is the absorption of w by Q and Eq.(20) the
emission offiw by QT from the dissipative medium, respec-

oscillators do not exist inside the dissipative medium in gen-

eral. It is shown in Sec. Il C that the quantum tunneling with XP(E_ﬁ“’)d(ﬁw)]

dissipation at finite temperature is formulated on the basis of

Egs.(15) and(16) and dispersion relatior(ge., unitarity and 2 (e ho

causality without referring to the explicit model Lagrangian =—| do 7[ 1+ e R(w)
of Caldeira and Leggett. mlo ere—1

sponds to the exchanye—V'. By the definition ofR(w) in

It is obvious from Eq{(3) that the change— — w corre-
Eq. (46), we then obtain the expression {

R(—w)] (21)

efho_ 1
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and similarly from Eqs(16) and (19),

T _Ede ﬁ_w —1 R
<Q Q>_’7T 0 @ 2 eﬁhw_l ((1))
+1+ Fro_ 1 R(—w)]. (22
Furthermore,
1 2 (= R(w)+R(— )
§<Q*Q+QQT>=;fO do E(w,T)| ————|,
(23
where
_ﬁw how
E(w,T)—T'Fm. (24)

If Q is a Hermitian operatorQ=Q", we have R(— o)
=R(w) and EQgs.(21)—(23) reduce to the familiar form of
the fluctuation-dissipation theorem of Callen and Welt2}

a2 ("
(Q%) pd B dow E(w,T)R(w). (25

The fluctuation{Q?) on the left-hand side is expressed in
terms of the dissipative coefficie®R(w) with a universal
kernel E(w,T). The fluctuation-dissipation theorem is re-
garded as a sum rule relating two quanti€¥) andR(w),
which are measured independently.

In Ref.[10] we used the final formulé&5) and thus only
the zero-temperaturease of quantum tunneling with dissi-

pation was formulated in a model-independent manner. ThHO
relations(15) and (16) apparently contain more information .
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ence, we chooseV(q) in Eq. (28) as a symmetric double-
well potential. Hy(Q) describes the dissipative medium as
before, but we do not need an explicit form ldf(Q) and
the dynamical properties dflo(Q) are indirectly specified
by our fluctuation-dissipation theore(h5) and(16).
We now start with the eigenstates laf(q)

Ho(a)|n)=Eq[n) (29
and consider the transition probability for-m+7%w by
emitting energyh » to the dissipative medium, which is as-
sumed to be in thermal equilibrium with temperatiiteThe
transition probability for this process is given by the lowest-
order perturbation oH,(q,Q) as

2 fik| oo

W(n—>m+ﬁw)=7|{m|q|n>|2f0 [fo p(E+hw)

X [(E+#w|QIE)p(E)f(E)IE

X 8(Ep—Em—fiow)d(ho)

1
ehw/kT_ 1

AMw

2

2w 2 (h
e
R(w)

X 8(Ey—En—ho)d(hiw), (30

where we used Eq15) for a HermitianQ. We also intro-
duced an explicit cutoffi A of effective frequency of the
dissipative medium, which could be included in the defini-
jon of R(w).

At finite temperature we also have an absorption probabil-

and they allow us to formulate the tunneling with dissipationIty

at finite temperature.

[ll. QUANTUM TUNNELING WITH DISSIPATION
AT FINITE TEMPERATURE

We start with the total Hamiltonian

H=Ho(Q)+Ho(q)+H,(a.,Q), (26)

whereHg(q) describes the unperturbed Hamiltonian of the

guantum system we are interested in,

1
Ho(Q)=mp2+V(OI), (27)

and H,(q,Q) stands for the interaction Hamiltonian in Eq.
(10),
Hi(q,Q)=0aQ, (28)

but now the variabley is promoted to a Hermitian quantum

operator; the explicit time dependence disappears in the

Schralinger picture. We also choose a Hermitign Qf
=Q, in conformity with the convention of the standard
Caldeira-Leggett moddll1]. In the context of macroscopic

guantum tunnelindor to be more precise, quantum coher-

2 WA[ (oo
W(n+ﬁw—>m):%|(m|q|n>|ZJ0 “0 p(E—fhw)

x|<E—ﬁw|Q|E>|2p<E>f<E>dE}
X 8(E,—Ept+hw)d(how)

2 ("Ahw
=[5

R(w)
h

2
— 2
" mlaln)

1
eﬁw/kT_ 1

X 8(Ep—Epthw)d(hw), (31
where we used Ed16). It is interesting that these formulas
satisfy the detailed balancing relation

holkTy(n—>m+7%iw)=w(m+hw—n),

e (32
with iw=E,— E,,.

We next define the half-width of the state) for emission
(when we prepare the staje) att=0)
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1 1 1 (%A ho
STH=Z43 winomthe 33 _ 2_f _he
2°n 2 % ( ) ( ) 2r1(E) % |(m|q|n>| 7)o Em+ﬁa)—E—iE
and the corresponding one for absorption x| 1+ 1 + hro
ghokT_1| En—fhw—E—ie
E1“ ’)zlhz w(n+hw—m). (34) 1 ( )
2 2" < o] d(fiw). (38)

It can be confirmed that Eqg.(33) gives (1/21,
=(1/2hn/M at T=0 for a simple harmonic oscillator
Ho(q)=(1/2M)p2+ (M w?/2)g> and Ohmic dissipation For the Ohmic dissipatioR(w)= = const, in which we
R(w) =7 [10]; this expression of,, is consistent with a specialize from now on, we have the real part of the energy

damped oscillatoMd+ 5q+ M w2g=0, which in turn justi-  Shift from Eq.(38) as
fies the normalization ofi, in Eq. (28).
The basic idea in our attempt to reproduce the results of Re3 (E,)= iz [(m|q|ny[2A A
the Caldeira-Leggett model without introducing an auxiliary h'm
infinite number of oscillators is to write dispersion relations,
which relate the imaginary part of energy eigenvalue to the _ lz [(n|alm)[2(Em—Ep)
corresponding real part. The imaginary parts are evaluated himr ‘s mon
by means of the fluctuation-dissipation theorem as in Egs.
(33) and (34). y f “P[ 1
We thus write a generalization of the dispersion relation 0 ho+E,—E,
for the self-energy correctiod.,(E) to the energy eigen-

Ohmic dissipation

valueE, as N 1 N 1
ho+E,—E, fAiw—E,tE,
c fﬂm 3(P(ENdE’ 1
2n(E)= E—ie XW d(fiw), (39
(— ’
_f Im ., '(E")dE —n - (35) where P stands for the principal value prescription. After
i E'—E—ie subtracting the first term proportional to\ as a renormal-

ization of the potentia[13] following the prescription of
Caldeira and LeggeftL1], the real part R&. ,(E,,) is rewrit-

where ten as
1
Im 2(7(E)=5T,7(E) ReS(E,) ——Z Knlalm)P(En—Eq)
hA 1 R(w) ATl 1 1
= m|qg|n zf ho|l+ ———|—— =
2 KmlalmP | - o e’“‘”kT—l] a Xfo 2| Aot E.—E. ho_E.tE.
X S(E—Ep—fhw)d(ho) (36) 5
X| 1+ ——| 1 d(%
cholkT_ 1 (hw)
and
7
== 22 (nla|m)[*(En~Ey)
o) E)=1F<*><E)=E K(mlafn)[? )
Im En ( _2 n = q fﬁAlF)[ 1 1
X — +
XJ'ﬁAﬁ 1 R(w) 0 2 |hwtEn—E, fAw—ELt+E,
O helkT_ 1| A 4
° le ! xcotf('BTw)d(ﬁw) (40)
X SE-Ep+how)d(fho). (37)

which agrees with the result of the field-theoretic formula-
Note that the lower bound of the integration range in thetion of the Caldeira-Leggett modgl3]. It should be noted
second term in Eq35) starts at—#AA due to the definition that the vacuum fluctuation terfspontaneous emissipm
in Eq. (37). We thus obtain Eqg. (1) plays a central role in our application, unlike the
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conventional applications of the fluctuation-dissipation theosider a set of real fermionic operato® and Q, with Q]

rem where the vacuum fluctuation is usually Subtracﬁﬂﬂd =Q and Q;ZQZ Corresponding to a Majorana Spinor,
For B=1/kT—c, one naturally recovers the zero tem- which satisfyQ;Q,#0.)
perature resulf10]. For thetwo-level approximationwhich Equation(10) is now replaced by

is valid for the lowest two levels in a deep double-well po-
tential, we have the resuli3] o [
B P(w)=TOIQJO dE p(E)f(E)[KE+%w|QE)]
Re3,(Ey)—Re3 (Ey) =€y In(e 2BAA), (41

o X p(E+fiw)+ [ E-fo|QE) p(E-fw)].
with the zeroth-order energy differenee=E,—E; and » (45)
= (29/wh) |{0|q|1)]* for the temperaturee<1/B<hA.
Or;g can (r:]onf]rm the absence of thlezlrgmeo)de.pend[%n;i]by Note the relative sign of two terms in E(15), which arises
splitting the integration range in Eq40) into [O, — .
Z[0a]+[afiA] with e<a<l/<hA. The energy spi. o e Grassmann nature giandg. We adopt the defini
ting (order parameterof quantum coherengesorrected by 10N of the dissipative coefficier®(w) = (w%/2) Ri(w)qq as
the dissipation is then given by in Eq. (13). We thus obtain

€ =Bz Re2o(By)J-[Ei-Re X (Ey)] Rfm):ﬂ:dEp<E>f<E>[|<E+ﬁw|QT|E>IZp<E+hw>

=¢e1—7In(e ?BAA)]
- +KE=fw|QIE) p(E-fw)]
=e[(e"?)BRA]™" (42) .
» . | = Zare ) [ CaEp@)HEp(ELh)
after the renormalization group improvement. This result, w 0
which suggests the suppression of quantum coherepge
<e for BAA>1, is in agreement with the dilute instanton
analysis for the case of Ohmic dissipatipb2]. Equation

(42), when compared with the resudt,)=e[fiwg/e]™ 7 or

X (E+%o|QTE)?. (46)

From this expression dR;(w) we find the basic relations

€)= €lfiwg/e]” 72" at T=0[12,13, shows that the in- 2 b
frared cutoff, which was originally provided kg is replaced ——11-———|Ri(w)
by 1/8. We can thus analyze the quantum coherence without 2 effhot1
referring to an explicit model Lagrangian. .
Although the mathematical basis of the dispersion relation :ﬁj dE p(E)f(E)p(E+fw)
at finite temperature is not as solid as the one at zero tem- 0
perature, our relatiort35) is justified in the present linear
response approximation in a limited temperature region since XKE+ho|QTE)P, (47)
it coincides with the second-order perturbation theory com-
bined with Egs.(15) and (16) [or Egs.(30) and (31)]; we 2 ho 1
note that the diagonal matrix elememt|g|n)=0 for a spe- 7T 2 | ehhoyq Ri(w)

cific double-well potential.
=ﬁf dEp(E)f(E)p(E-fiw)
IV. FLUCTUATION-DISSIPATION THEOREM 0
FOR FERMIONIC DISSIPATION
_ - _ _ X[(E—-fw|QIE). (48)
We now discuss a fermionic version of the fluctuation-
dissipation theorem of Callen and Welton starting with EQThe left-hand side of Eq$47) is regarded as the spontane-
(9). The operator® andQ" are now taken to be fermionic ous and induced emissions @ffective fermionic oscilla-
operators andj andq are Grassmann numbers that satisfy tors and the relative minus sign accounts for the Fermi sta-
tistics. The left-hand side of Eq48) is regarded as the
qg=—-qq, g?=0, ¢?=0 (43  (induced absorption of the fermionic oscillators.
Equation(17) is now replaced by

and

J— ar «®
— _ R —w=—1+e*/”“”f dEp(E)f(E)p(E+tiw
Qa=-4Q Qa=-qQ, Q*=0, (Q")?=0 (49 ey Jo AEPETER(ETR)

2

Because ofQ?2=0, the real fermionic case is trivial and we XKE+#w[QIE), (49
consider a compleR that satisfieQQ'+0. In a relativistic . - )
notation of four-dimensional space-time, oQris regarded Where we define®(— w) = (w?/2)R¢(w)qq by changing the
as one of the components of tf@omposité two-component  order ofq andq. For R¢(— w) with >0, we thus obtain the
complex spinorQ,, a=1,2. (Instead, one may also con- relations
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2 ho

T 2

1
ehfho 41

Ri(— o)

ZﬁdeEp(E)f(E)p(E-l—ﬁw)
0
X[(E+%w|QIE), (50)

2 ho

w2

1

o)

thxdEp(E)f(E)p(E—ﬁw)
0

x(E-fiw|QT[E). (50
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In practice, the composite operatQrmay carry a well-
defined fermion number and the fermion number may be
conserved. Moreover, the production of an antipartice
hole statg may be suppressed; in such a case, one may set

Ri(—w)=0 in our formulas. The physical content of the
fluctuation-dissipation theorem for fermionic dissipation, as
is formulated here, is that the thermal average of (twm-
posite operatorQQ' or QQ, which characterizes the fluc-
tuation, is represented in terms of effective fermionic excita-
tions with their spectrum being specified B¥:(w); the
parameteR;(w) in turn characterizes the energy dissipation
into the dissipative medium. In this context, the presence of
energy dissipation withR;(w) necessarily leads to the pres-
ence of effective(or collective fermionic excitations; this
property is analogous to the Nambu-Goldstone theorem for
spontaneous symmetry breakdown, which asserts an inevi-

Combining these relations, we finally obtain the fluctuation-{20l€ appearance of massless excitations when continuous

dissipation theorem for fermionic dissipatigor fluctuation
as

(QQh= [ (EleQ'lEN(E)t(E)0E
=fwdEp<E>f<E>{fm|<E+ﬁw|Q*|E>|2
0 0

><p(E+ﬁw)d(ﬁw)+J:|(E—ﬁw|QT|E>|2

Xp(E-fw)d(hw)

2 °°d hw 1 1 R
“wlo dz| |t e g
me(—w)] (52)
and similarly
" _ZJ‘wd hw R
(QIQ)=], do o |R1@)
1 L IR 53
+ T o1 f(—w). (53

Furthermore,

_<QTQ_QQT>_ _j dw Ef(w!T) %}

where

hw hw
Ef(w'T):_T—}_—eﬁﬁw_Fl' (55)

Our sign convention of the dissipative coefficieRg(w)
andR;(— w) is chosen so thaR;(w)=0 andR;(— w)=0.

symmetry is spontaneously broken, as was emphasized in
Ref.[10]. The difference is that these collective excitations
in the present context aeffectiveones.

We finally comment on a technical complication in deriv-
ing Eq. (46). The calculation46) may appear to be straight-
forward and identical to Eq.14). However, a closer exami-
nation reveals that an additional assumption is in fact
involved: If |[E) is a bosonic statéwith even “G parity”
[15)), i.e.,

alEy=|E)q, (56)

thenQ|E) is a fermionic statéodd G parity), i.e.,

a(Q|E))=—(Q|E))q (57)

and vice versa. SincéE*7%w|Q|E) is not a Grassmann
variable but rather an ordinary numbeg +%w) should
have differentG parity from |E). That is, the interaction

q€“'Q+Q'ge "' would induce not only the energy shift
E—E=*#%w but also the change d& parity. This fact pre-
vents one from obtaining E¢46) in a naive way because the
state|E) obtained from|E—#%w) by a shift inE, E—~E
+7%w, has a differenG parity from the original E). In ob-
taining Eq.(46) we assume that the initial staté) has even
G parity with probability 1/2 and od& parity with probabil-
ity 1/2. This assumption is consistent with the notion of dis-
sipation, which implies that the “radiation” carries away or
injects a small amount of energy specified7oy at a time.
We can thus obtain Eq446) by averaging ove6 parity also.

V. CONCLUSION

The main purpose of the present paper is to point out the
remarkable relation§l) and (2), which arise from a simple
application of Fermi’'s golden rule and the weak temperature
dependence of the dissipative coefficient, and their applica-
tions to quantum tunneling with dissipation. In the conven-
tional treatment of the fluctuation-dissipation theorem in Eq.
(25), the vacuum fluctuation is often subtracted away by sim-
ply saying that it is not observabJé&4]. In contrast, the term
corresponding to the vacuum fluctuation plays a central role
in our application since it describes the spontaneous emis-
sion of effective excitations into the dissipative medium; it is
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thus the only effect remaining at the vanishing temperatureadded to or removed from the system we are interested in

Our dispersion relation for the self-ener@5), which is  and a fully quantum mechanical fluctuation-dissipation theo-
essentially equivalent to the second-order perturbation theomem should be able to handle the fermionic fluctuation and,
in linear response approximation, then gives rise to a changesonsequently, fermionic dissipation.
in the real part of the tunneling energy splittibghich is the In the context of condensed matter physics, we usually
order parameter of quantum coherend@ur formulas natu- measurédosonicquantities such as voltage or electric current
rally give rise to the dilute instanton results for the ordereven if the elementary process involves the transfer of fer-
parameter both at finite and vanishing temperafdd. In mions. In such a case, the conventional bosonic fluctuation-
this sense our attempt to reproduce the physical results of thgissipation theorem is applicable. It is our hope that a prop-
Caldeira-Leggett model without referring to an explicit erly defined treatment of elementary transfer processes may
model Lagrangian has been successful at least in the analysiead to an application of the notion of fermionic fluctuation
of quantum coherence at both=0 [10] and T+#0. or dissipation in the future.

Of course, the formulation of Caldeira and Legdétt] is As for the physical phenomena where the fermionic
flexible enough and it is applicable to many other physicalfluctuation-dissipation theorem may have some relevance,
contexts. Nevertheless, for those who wonder if one can anave note the fermion emission from a black hpl&] and the
lyze some physical processes without an infinite number ofermion production in an accelerated frafri&]. The notion
oscillators, our reformulation of the quantum tunneling with of quantum noise plays a fundamental role in the analyses of
dissipation on the basis of the fluctuation-dissipation theorenthese processes and thus the fermionic fluctuation-dissipation
and dispersion relations may give an answer by showingheorem may provide a convenient framework to describe
such possibility as well as limitations. some general features of these interesting quantum pro-

Another purpose of the present paper is to present a geresses. Another area of physics where fermionic fluctuation
eralization of the fluctuation-dissipation theorem of Callen-may play a role is the theory of supersymmetoy boson-
Welton to the case of fermionic dissipati¢or fluctuation).  fermion symmetry [18]. The basic current of supersymme-
Since fermions are basically quantum mechanical, the notiotry is fermionicand thus the thermal average of a product of
of fermionic dissipation is characteristically quantum me-such currentgor related gravitino fieldsnevitably leads to a
chanical. We emphasize that a mere excitation of a fermiomotion of fermionic fluctuation. Though we do not know a
from one state to another does not imply fermionic fluctua-specific application of the fermionic fluctuation-dissipation
tion in the present context; the force fields or currents intheorem at this moment, our formulation may turn out to be
volved should be fermionic, though the fermionic excitationuseful in future analyses of supersymmetry in a multiparticle
may be an effective one or a quasiparticle. In full quantumthermal setting, where supersymmetry is known to be inevi-
theory, both the bosonic and fermionic modes can be equalltably broken by thermal effects.
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