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Fluctuation-dissipation theorem and quantum tunneling with dissipation
at finite temperature

Kazuo Fujikawa and Hiroaki Terashima
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

~Received 16 July 1998!

A reformulation of the fluctuation-dissipation theorem of Callen and Welton@Phys. Rev.83, 34 ~1951!# is
presented in such a manner that the basic idea of Feynman Vernon@Ann. Phys.~N.Y.! 24, 118 ~1963!# and
Caldeira and Leggett@Ann. Phys.~N.Y.! 149, 374~1983!; Phys. Rev. Lett.46, 211~1981!# of using an infinite
number of oscillators to simulate the dissipative medium is realized manifestly without actually introducing
oscillators. If one assumes the existence of a well defined dissipative coefficientR(v), which depends little on
the temperature in the energy region we are interested in, the spontaneous and induced emissions as well as
induced absorption of these effective oscillators with a correct Bose distribution automatically appear. Com-
bined with a dispersion relation, we reproduce the tunneling formula in the presence of dissipation at a finite
temperature without referring to an explicit model Lagrangian. The fluctuation-dissipation theorem of Callen
and Welton is also generalized to the fermionic dissipation~or fluctuation!, which allows a transparent physical
interpretation in terms of second-quantized fermionic oscillators. This fermionic version of the fluctuation-
dissipation theorem may become relevant in the analyses of, for example, fermion radiation from a black
hole and also supersymmetry in the early Universe.@S1063-651X~98!04812-0#

PACS number~s!: 05.30.2d, 03.65.2w
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I. INTRODUCTION

The fluctuation-dissipation theorem, which relates
spontaneous fluctuation of ‘‘force fields’’ in thermal equilib
rium to irreversible dissipation, provides a basis of statisti
mechanics for irreversible processes that are slightly ou
thermal equilibrium. The fluctuation-dissipation theorem h
been formulated by various authors in the past@1–7#. We
find the formulation by Callen and Welton@2# to be intu-
itively understandable and appealing. They showed@2# that a
general form of the fluctuation-dissipation theorem cover
wide range of phenomena such as the Einstein relation
Brownian motion@8#, the Nyquist formula for voltage fluc
tuation in conductors@9#, and the Planck distribution fo
photons. In Ref.@10# it was shown that the effect of dissipa
tion on quantum tunneling~or coherence! at zero tempera-
ture can be formulated on the basis of the fluctuatio
dissipation theorem of Callen and Welton, causality, a
unitarity ~i.e., dispersion relations! without referring to an
explicit form of Lagrangian in the manner of Caldeira a
Leggett@11#.

In this paper we present a reformulation of t
fluctuation-dissipation theorem of Callen and Welton in su
a manner that the basic idea of Feynman and Vernon@7# and
Caldeira and Leggett@11#, which simulates the dissipativ
medium by an infinite number of oscillators, becomes ma
fest without actually introducing oscillators. The quantu
tunneling atfinite temperatureis described by this reformu
lation. Although we use the quantum mechanical Fe
golden rule, the spontaneous and induced emissions as
as induced absorption of these effective oscillators wit
correct Bose distribution automatically appear if one
sumes the existence of a well defined dissipative coeffic
R(v), which depends little on the temperature in the ene
region we are interested in.
PRE 581063-651X/98/58~6!/7063~8!/$15.00
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To be specific, for the simplest case of a Hermitian~com-
posite! operatorQ, which represents the~generally compli-
cated! dynamical freedom of the dissipative medium, w
have the relations

2

p

\v

2 F11
1

eb\v21
GR~v!

5\E
0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQuE& z2 ~1!

and

2

p

\v

2 F 1

eb\v21
GR~v!

5\E
0

`

dE r~E! f ~E!r~E2\v!

3 z^E2\vuQuE& z2, ~2!

where f (E) stands for a normalized Boltzmann factor wi
f (E1\v)/ f (E)5e2b\v and b51/kT. These formulas are
remarkable. On the right-hand sides of these relations
simply use Fermi’s golden rule for the first-order perturb
tion. We recognize the left-hand side of Eq.~1! as represent-
ing the spontaneous and induced emissions of seco
quantized bosonic oscillators and the left-hand side of
~2! as the standard~induced! absorption formula. Moreover
the spectrum of the effective bosonic oscillators is charac
ized by the dissipative coefficient~resistance! R(v). In other
words, the presence ofR(v) necessarily implies the pres
ence of effective oscillators characterized byR(v), as was
emphasized in Ref.@10#. These expressions realize the ba
7063 © 1998 The American Physical Society
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idea of Feynman and Vernon@7# and Caldeira and Legge
@11# without actually introducing an infinite number of osc
lators and they naturally satisfy the detailed balancing re
tion. It is shown that these formulas~1! and ~2! lead to the
conventional fluctuation-dissipation theorem of Callen a
Welton.

Combining Eqs.~1! and~2! with a dispersion relation, it is
shown in the text that we can reproduce the tunneling
mula in the presence of dissipation at finite temperature w
out referring to an explicit model Lagrangian. We al
present a generalization of the Callen-Welton formula
fermionic dissipation~or fluctuation! in contrast to the con-
ventional bosonic dissipation such as in Eqs.~1! and ~2!.
These formulas for fermionic dissipation, though somew
academic at this moment, may become relevant in the an
ses of, for example, fermion emission from a black hole
supersymmetric properties in the early Universe.

II. REFORMULATION OF THE
FLUCTUATION-DISSIPATION THEOREM

A. Microscopic power dissipation

We first start with a Hamiltonian

H5H0~Q!1V~Q,q!eivt1V~Q,q!†e2 ivt, ~3!

whereH0(Q) is the unperturbed Hamiltonian for the diss
pative medium, which has eigenstates

H0uEn&5EnuEn&. ~4!

The variableq appearing inV(Q,q) describes the externa
dynamical freedom that perturbs the dissipative mediu
The variableq is treated as a classical variable for the m
ment.

If the dissipative medium is initially in the stateuEn&, the
lowest-order transition rate~transition probability per unit
time! is given by Fermi’s golden rule by treating the last tw
terms in Eq.~3! as a small perturbation,

w5
2p

\
@ z^En1\vuV†uEn& z2 r~En1\v!

1 z^En2\vuVuEn& z2 r~En2\v!#. ~5!

Since the first term stands for the absorption of energy\v
and the second term for the emission of energy\v, the
energy absorption rate by the dissipative medium is given

2pv@ z^En1\vuV†uEn& z2 r~En1\v!

2 z^En2\vuVuEn& z2 r~En2\v!]. ~6!

If the system is initially in thermal equilibrium at tem
peratureT, we must average over all initial states, weighti
the stateuEn& by the ~normalized! Boltzmann factorf (En),
which satisfies

f ~En1\v!

f ~En!
5e2b\v, b5

1

kT
. ~7!

Then the energy dissipation per unit time is given by
-

d

r-
-

r

t
ly-
r

.
-

y

P~v!52pvE
0

`

dE r~E! f ~E!@ z^E1\vuV†uE& z2 r~E1\v!

2 z^E2\vuVuE& z2 r~E2\v!#, ~8!

where we replaced the summation overn by an integration
over energy.

Now we assume thatV can be written asV5qQ/2,
namely, the interaction part in Eq.~3! is written as

HI5
1

2
~qeivtQ1Q†q̄e2 ivt! ~9!

in the spirit of linear response approximation;q is an infini-
tesimal complex number andQ is a bosonic composite op
erator, respectively. Here we allow the operatorQ to be non-
Hermitian in general so that we can readily extend o
formulation to fermionic dissipation later. Then we obtain

P~v!5
pv

2
qq̄E

0

`

dE r~E! f ~E!@ z^E1\vuQ†uE& z2

3r~E1\v!2 z^E2\vuQuE& z2 r~E2\v!#.

~10!

B. Macroscopic dissipative coefficientR„v…

We next define the phenomenological macroscopic di
pative coefficient~resistance! R(v) on the basis of the fol-
lowing reasoning@10#. We first define an infinitesimal~com-
plex! coordinate inHI @Eq. ~9!#,

q~ t !5qeivt. ~11!

The existence of the energy dissipation into the medium~10!
induced by the external perturbationq(t) suggests the pres
ence of a dissipative force~reaction! acting on the variable
Re q(t), which oscillates with frequencyv,

F52R~v!Re q̇~ t !, ~12!

whereR(v) is a real function. Note thatHI5QRe q(t) in
Eq. ~9! for a Hermitian operatorQ; this shows that Req(t) is
a natural classical counter part of the~Hermitian! quantum
variable q̂ to describe the macroscopic quantum syst
H0(q). The power dissipation per unit time generated by t
phenomenological reactive force is given by

P~v!52Re FRe q̇~ t !̄

5R~v!@Re q̇~ t !# 2̄

5
1

2
R~v!@Re q̇~ t !#21@ Im q̇~ t !#2

5
v2

2
R~v!qq̄, ~13!

where the overbar indicates time averaging.
Combining Eqs.~10! and~13!, we obtain the microscopic

expression for the dissipative coefficient~resistance! R(v),
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R~v!5
p

vE0

`

dE r~E! f ~E!@ z^E1\vuQ†uE& z2

3 r~E1\v!2 z^E2\vuQuE& z2 r~E2\v!#

5
p

v
~12e2b\v!E

0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQ†uE& z2. ~14!

From this expression ofR(v) we find the basic relations

2

p

\v

2 F11
1

eb\v21
GR~v!5\E

0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQ†uE& z2, ~15!

2

p

\v

2 F 1

eb\v21
GR~v!5\E

0

`

dE r~E! f ~E!r~E2\v!

3 z^E2\vuQuE& z2. ~16!

Equation~15! is the absorption of\v by Q† and Eq.~16! the
emission of\v by Q.

These relations~15! and ~16! are the prototype of the
fluctuation-dissipation theorem of Callen and Welton. T
fluctuation-dissipation theorem as it stands is a mathema
identity and contains no physical contents by itself. Wha
remarkable is that we obtain highly nontrivial relations
Eqs. ~15! and ~16! if one assumesthat the dissipative coef
ficient R(v) depends little on the temperature in the regi
we are interested in. We can recognize the left-hand sid
Eq. ~15! as standing for the spontaneous and induced em
sions of the second-quantized bosonic oscillator with f
quencyv into the dissipative medium, whereas the left-ha
side of Eq.~16! is recognized as the~induced! absorption of
these oscillators from the dissipative medium at tempera
T. Moreover, the spectrum of these effective oscillators
precisely specified by the dissipative coefficientR(v). In
particular, there is no effective oscillator ofv for which
R(v) vanishes. These properties realize the basic phys
idea of Feynman and Vernon@7# and Caldeira and Legge
@11#, which simulates the dissipative medium by an infin
number of oscillators. In our approach this physical idea
realized by a simple application of Fermi’s golden rule co
bined with the temperature independence of the dissipa
coefficientR(v) without actually introducing oscillators. W
emphasize that these oscillators are effective and such
oscillators do not exist inside the dissipative medium in g
eral. It is shown in Sec. II C that the quantum tunneling w
dissipation at finite temperature is formulated on the basi
Eqs.~15! and~16! and dispersion relations~i.e., unitarity and
causality! without referring to the explicit model Lagrangia
of Caldeira and Leggett.

It is obvious from Eq.~3! that the changev→2v corre-
sponds to the exchangeV↔V†. By the definition ofR(v) in
Eq. ~46!, we then obtain the expression
e
al
s

of
s-
-

d

re
s

al

s
-
e

eal
-

of

R~2v!5
p

vE0

`

dE r~E! f ~E!@ z^E1\vuQuE& z2

3 r~E1\v!2 z^E2\vuQ†uE& z2 r~E2\v!#

~17!

5
p

v
~12e2b\v!E

0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQuE& z2. ~18!

Clearly,R(2v)5R(v) in the case of a Hermitian operato
Q5Q†.

For R(2v) with v.0, we obtain relations similar to
Eqs.~15! and ~16!,

2

p

\v

2 F11
1

eb\v21
GR~2v!

5\E
0

`

dE r~E! f ~E!r~E1\v!z^E1\vuQuE& z2,

~19!

2

p

\v

2 F 1

eb\v21
GR~2v!

5\E
0

`

dE r~E! f ~E!r~E2\v!z^E2\vuQ†uE& z2.

~20!

Equation~19! is the absorption of\v by Q and Eq.~20! the
emission of\v by Q† from the dissipative medium, respec
tively.

C. Fluctuation-dissipation theorem

Finally, we formulate the fluctuation-dissipation theore
of Callen and Welton. From Eqs.~15! and ~20! we have,
after integration overv ~and changing the order of integra
tion overE andv),

^QQ†&[E
0

`

^EuQQ†uE&r~E! f ~E!dE

5E
0

`

dE r~E! f ~E!H E
0

`

z^E1\vuQ†uE& z2

3r~E1\v!d~\v!1E
0

`

z^E2\vuQ†uE& z2

3r~E2\v!d~\v!J
5

2

pE0

`

dv
\v

2 H F11
1

eb\v21
GR~v!

1F 1

eb\v21
GR~2v!J ~21!
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and similarly from Eqs.~16! and ~19!,

^Q†Q&5
2

pE0

`

dv
\v

2 H F 1

eb\v21
GR~v!

1F11
1

eb\v21
GR~2v!J . ~22!

Furthermore,

1

2
^Q†Q1QQ†&5

2

pE0

`

dv E~v,T!FR~v!1R~2v!

2 G ,
~23!

where

E~v,T!5
\v

2
1

\v

eb\v21
. ~24!

If Q is a Hermitian operator,Q5Q†, we have R(2v)
5R(v) and Eqs.~21!–~23! reduce to the familiar form of
the fluctuation-dissipation theorem of Callen and Welton@2#,

^Q2&5
2

pE0

`

dv E~v,T!R~v!. ~25!

The fluctuation^Q2& on the left-hand side is expressed
terms of the dissipative coefficientR(v) with a universal
kernel E(v,T). The fluctuation-dissipation theorem is r
garded as a sum rule relating two quantities^Q2& andR(v),
which are measured independently.

In Ref. @10# we used the final formula~25! and thus only
the zero-temperaturecase of quantum tunneling with diss
pation was formulated in a model-independent manner.
relations~15! and ~16! apparently contain more informatio
and they allow us to formulate the tunneling with dissipati
at finite temperature.

III. QUANTUM TUNNELING WITH DISSIPATION
AT FINITE TEMPERATURE

We start with the total Hamiltonian

H5H0~Q!1H0~q!1HI~q,Q!, ~26!

whereH0(q) describes the unperturbed Hamiltonian of t
quantum system we are interested in,

H0~q!5
1

2M
p21V~q!, ~27!

and HI(q,Q) stands for the interaction Hamiltonian in E
~10!,

HI~q,Q!5qQ, ~28!

but now the variableq is promoted to a Hermitian quantum
operator; the explicit time dependence disappears in
Schrödinger picture. We also choose a HermitianQ, Q†

5Q, in conformity with the convention of the standa
Caldeira-Leggett model@11#. In the context of macroscopi
quantum tunneling~or to be more precise, quantum cohe
e

e

ence!, we chooseV(q) in Eq. ~28! as a symmetric double
well potential.H0(Q) describes the dissipative medium
before, but we do not need an explicit form ofH0(Q) and
the dynamical properties ofH0(Q) are indirectly specified
by our fluctuation-dissipation theorem~15! and ~16!.

We now start with the eigenstates ofH0(q)

H0~q!un&5Enun& ~29!

and consider the transition probability forn→m1\v by
emitting energy\v to the dissipative medium, which is as
sumed to be in thermal equilibrium with temperatureT. The
transition probability for this process is given by the lowe
order perturbation ofHI(q,Q) as

w~n→m1\v!5
2p

\
z^muqun& z2E

0

\LF E
0

`

r~E1\v!

3 z^E1\vuQuE& z2r~E! f ~E!dEG
3d~En2Em2\v!d~\v!

5
2p

\
z^muqun& z2

2

pE0

\L\v

2 F11
1

e\v/kT21
G

3
R~v!

\
d~En2Em2\v!d~\v!, ~30!

where we used Eq.~15! for a HermitianQ. We also intro-
duced an explicit cutoff\L of effective frequency of the
dissipative medium, which could be included in the defi
tion of R(v).

At finite temperature we also have an absorption proba
ity

w~n1\v→m!5
2p

\
z^muqun& z2E

0

\LF E
0

`

r~E2\v!

3 z^E2\vuQuE& z2r~E! f ~E!dEG
3d~En2Em1\v!d~\v!

5
2p

\
^muqun&u2

2

pE0

\L\v

2

3F 1

e\v/kT21
GR~v!

\

3d~En2Em1\v!d~\v!, ~31!

where we used Eq.~16!. It is interesting that these formula
satisfy the detailed balancing relation

e\v/kTw~n→m1\v!5w~m1\v→n!, ~32!

with \v5En2Em .
We next define the half-width of the stateun& for emission

~when we prepare the stateun& at t50)
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1

2
Gn

~1 !5
1

2
\(

m
w~n→m1\v! ~33!

and the corresponding one for absorption

1

2
Gn

~2 !5
1

2
\(

m
w~n1\v→m!. ~34!

It can be confirmed that Eq.~33! gives (1/2)Gn
5(1/2)\h/M at T50 for a simple harmonic oscillato
H0(q)5(1/2M )p21(Mv2/2)q2 and Ohmic dissipation
R(v)5h @10#; this expression ofGn is consistent with a
damped oscillatorMq̈1hq̇1Mv2q50, which in turn justi-
fies the normalization ofHI in Eq. ~28!.

The basic idea in our attempt to reproduce the results
the Caldeira-Leggett model without introducing an auxilia
infinite number of oscillators is to write dispersion relation
which relate the imaginary part of energy eigenvalue to
corresponding real part. The imaginary parts are evalua
by means of the fluctuation-dissipation theorem as in E
~33! and ~34!.

We thus write a generalization of the dispersion relat
for the self-energy correctionSn(E) to the energy eigen
valueEn as

Sn~E!5
1

pE0

` Im Sn
~1 !~E8!dE8

E82E2 i e

1
1

pE2\L

` Im Sn
~2 !~E8!dE8

E82E2 i e
, ~35!

where

Im Sn
~1 !~E![

1

2
Gn

~1 !~E!

5(
m

z^muqun& z2E
0

\L

\vF11
1

e\v/kT21
GR~v!

\

3d~E2Em2\v!d~\v! ~36!

and

Im Sn
~2 !~E![

1

2
Gn

~2 !~E!5(
m

z^muqun& z2

3E
0

\L

\vF 1

e\v/kT21
GR~v!

\

3d~E2Em1\v!d~\v!. ~37!

Note that the lower bound of the integration range in
second term in Eq.~35! starts at2\L due to the definition
in Eq. ~37!. We thus obtain
of

,
e
ed
s.

n

e

Sn~E!5(
m

z^muqun& z2
1

pE0

\LH \v

Em1\v2E2 i e

3F11
1

e\v/kT21
G1

\v

Em2\v2E2 i e

3F 1

e\v/kT21
G J R~v!

\
d~\v!. ~38!

Ohmic dissipation

For the Ohmic dissipationR(v)[h5const, in which we
specialize from now on, we have the real part of the ene
shift from Eq.~38! as

Re Sn~En!5
h

\p(
m

u^muqun& z2\L

2
h

\p(
m

z^nuqum& z2~Em2En!

3E
0

\L

PH 1

\v1Em2En

1F 1

\v1Em2En
1

1

\v2Em1En
G

3
1

e\v/kT21
J d~\v!, ~39!

where P stands for the principal value prescription. Af
subtracting the first term proportional to\L as a renormal-
ization of the potential@13# following the prescription of
Caldeira and Leggett@11#, the real part ReSn(En) is rewrit-
ten as

ReSn~En!52
h

\p(
m

u^nuqum& z2~Em2En!

3E
0

\L1

2H F 1

\v1Em2En
1

1

\v2Em1En
G

3S 11
2

e\v/kT21
D J d~\v!

52
h

\p(
m

^nuqum&u2~Em2En!

3E
0

\L1

2
PF 1

\v1Em2En
1

1

\v2Em1En
G

3cothS b\v

2 Dd~\v! ~40!

which agrees with the result of the field-theoretic formu
tion of the Caldeira-Leggett model@13#. It should be noted
that the vacuum fluctuation term~spontaneous emission! in
Eq. ~1! plays a central role in our application, unlike th
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conventional applications of the fluctuation-dissipation th
rem where the vacuum fluctuation is usually subtracted@2#.

For b51/kT→`, one naturally recovers the zero tem
perature result@10#. For thetwo-level approximation, which
is valid for the lowest two levels in a deep double-well p
tential, we have the result@13#

Re S2~E2!2Re S1~E1!.eh̄ ln~e22b\L!, ~41!

with the zeroth-order energy differencee[E22E1 and h̄
5 (2h/p\) z^0uqu1& z2 for the temperaturee!1/b!\L.
One can confirm the absence of thee ln e dependence by
splitting the integration range in Eq.~40! into @0,\L#
5@0,a#1@a,\L# with e!a!1/b!\L. The energy split-
ting ~order parameterof quantum coherence! corrected by
the dissipation is then given by

e~1!5@E22Re S2~E2!#2@E12Re S1~E1!#

.e@12h̄ ln~e22b\L!#

.e@~e22!b\L#2h̄ ~42!

after the renormalization group improvement. This res
which suggests the suppression of quantum coherencee (1)
!e for b\L@1, is in agreement with the dilute instanto
analysis for the case of Ohmic dissipation@12#. Equation
~42!, when compared with the resulte (1)5e@\v0 /e#2h̄ or
e (1)5e@\v0 /e#2h̄/(12h̄) at T50 @12,13#, shows that the in-
frared cutoff, which was originally provided bye, is replaced
by 1/b. We can thus analyze the quantum coherence with
referring to an explicit model Lagrangian.

Although the mathematical basis of the dispersion relat
at finite temperature is not as solid as the one at zero t
perature, our relation~35! is justified in the present linea
response approximation in a limited temperature region s
it coincides with the second-order perturbation theory co
bined with Eqs.~15! and ~16! @or Eqs. ~30! and ~31!#; we
note that the diagonal matrix element^nuqun&50 for a spe-
cific double-well potential.

IV. FLUCTUATION-DISSIPATION THEOREM
FOR FERMIONIC DISSIPATION

We now discuss a fermionic version of the fluctuatio
dissipation theorem of Callen and Welton starting with E
~9!. The operatorsQ andQ† are now taken to be fermioni
operators andq and q̄ are Grassmann numbers that satisf

qq̄52q̄q, q250, q̄250 ~43!

and

Qq52qQ, Qq̄52q̄Q, Q250, ~Q†!250 ~44!

Because ofQ250, the real fermionic case is trivial and w
consider a complexQ that satisfiesQQ†Þ0. In a relativistic
notation of four-dimensional space-time, ourQ is regarded
as one of the components of the~composite! two-component
complex spinorQa , a51,2. ~Instead, one may also con
-

t,

ut

n
-

e
-

-
.

sider a set of real fermionic operatorsQ1 and Q2 with Q1
†

5Q1 and Q2
†5Q2 corresponding to a Majorana spino

which satisfyQ1Q2Þ0.)
Equation~10! is now replaced by

P~v!5
pv

2
qq̄E

0

`

dE r~E! f ~E!@ z^E1\vuQ†uE& z2

3 r~E1\v!1 z^E2\vuQuE& z2 r~E2\v!#.

~45!

Note the relative sign of two terms in Eq.~45!, which arises
from the Grassmann nature ofq and q̄. We adopt the defini-
tion of the dissipative coefficientP(v)5(v2/2) Rf(v)qq̄ as
in Eq. ~13!. We thus obtain

Rf~v!5
p

vE0

`

dE r~E! f ~E!@ z^E1\vuQ†uE& z2 r~E1\v!

1 z^E2\vuQuE& z2 r~E2\v!#

5
p

v
~11e2b\v!E

0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQ†uE& z2. ~46!

From this expression ofRf(v) we find the basic relations

2

p

\v

2 F12
1

eb\v11
GRf~v!

5\E
0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQ†uE& z2, ~47!

2

p

\v

2 F 1

eb\v11
GRf~v!

5\E
0

`

dE r~E! f ~E!r~E2\v!

3 z^E2\vuQuE& z2. ~48!

The left-hand side of Eqs.~47! is regarded as the spontan
ous and induced emissions of~effective! fermionic oscilla-
tors and the relative minus sign accounts for the Fermi
tistics. The left-hand side of Eq.~48! is regarded as the
~induced! absorption of the fermionic oscillators.

Equation~17! is now replaced by

R̄f~2v!5
p

v
~11e2b\v!E

0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQuE& z2, ~49!

where we definedP(2v)5(v2/2)R̄f(v)q̄q by changing the
order ofq andq̄. For R̄f(2v) with v.0, we thus obtain the
relations
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2

p

\v

2 F12
1

eb\v11
G R̄f~2v!

5\E
0

`

dE r~E! f ~E!r~E1\v!

3 z^E1\vuQuE& z2, ~50!

2

p

\v

2 F 1

eb\v11
G R̄f~2v!

5\E
0

`

dE r~E! f ~E!r~E2\v!

3 z^E2\vuQ†zE& z2. ~51!

Combining these relations, we finally obtain the fluctuatio
dissipation theorem for fermionic dissipation~or fluctuation!
as

^QQ†&[E
0

`

^EuQQ†uE&r~E! f ~E!dE

5E
0

`

dEr~E! f ~E!H E
0

`

z^E1\vuQ†uE& z2

3r~E1\v!d~\v!1E
0

`

z^E2\vuQ†uE& z2

3r~E2\v!d~\v!J
5

2

pE0

`

dv
\v

2 H F12
1

eb\v11
GRf~v!

1F 1

eb\v11
G R̄f~2v!J ~52!

and similarly

^Q†Q&5
2

pE0

`

dv
\v

2 H F 1

eb\v11
GRf~v!

1F12
1

eb\v11
G R̄f~2v!J . ~53!

Furthermore,

1

2
^Q†Q2QQ†&5

2

pE0

`

dv Ef~v,T!FRf~v!2R̄f~2v!

2
G ,

~54!

where

Ef~v,T!52
\v

2
1

\v

eb\v11
. ~55!

Our sign convention of the dissipative coefficientsRf(v)
and R̄f(2v) is chosen so thatRf(v)>0 andR̄f(2v)>0.
-

In practice, the composite operatorQ may carry a well-
defined fermion number and the fermion number may
conserved. Moreover, the production of an antiparticle~or
hole state! may be suppressed; in such a case, one may
R̄f(2v)50 in our formulas. The physical content of th
fluctuation-dissipation theorem for fermionic dissipation,
is formulated here, is that the thermal average of the~com-
posite! operatorQQ† or Q†Q, which characterizes the fluc
tuation, is represented in terms of effective fermionic exci
tions with their spectrum being specified byRf(v); the
parameterRf(v) in turn characterizes the energy dissipati
into the dissipative medium. In this context, the presence
energy dissipation withRf(v) necessarily leads to the pre
ence of effective~or collective! fermionic excitations; this
property is analogous to the Nambu-Goldstone theorem
spontaneous symmetry breakdown, which asserts an in
table appearance of massless excitations when contin
symmetry is spontaneously broken, as was emphasize
Ref. @10#. The difference is that these collective excitatio
in the present context areeffectiveones.

We finally comment on a technical complication in deri
ing Eq. ~46!. The calculation~46! may appear to be straight
forward and identical to Eq.~14!. However, a closer exami
nation reveals that an additional assumption is in f
involved: If uE& is a bosonic state~with even ‘‘G parity’’
@15#!, i.e.,

quE&5uE&q, ~56!

thenQuE& is a fermionic state~odd G parity!, i.e.,

q~QuE&)52~QuE&)q ~57!

and vice versa. SincêE6\vuQuE& is not a Grassmann
variable but rather an ordinary number,uE6\v& should
have differentG parity from uE&. That is, the interaction
qeivtQ1Q†q̄e2 ivt would induce not only the energy shi
E→E6\v but also the change ofG parity. This fact pre-
vents one from obtaining Eq.~46! in a naive way because th
state uE& obtained fromuE2\v& by a shift in E, E→E
1\v, has a differentG parity from the originaluE&. In ob-
taining Eq.~46! we assume that the initial stateuE& has even
G parity with probability 1/2 and oddG parity with probabil-
ity 1/2. This assumption is consistent with the notion of d
sipation, which implies that the ‘‘radiation’’ carries away o
injects a small amount of energy specified by\v at a time.
We can thus obtain Eq.~46! by averaging overG parity also.

V. CONCLUSION

The main purpose of the present paper is to point out
remarkable relations~1! and ~2!, which arise from a simple
application of Fermi’s golden rule and the weak temperat
dependence of the dissipative coefficient, and their appl
tions to quantum tunneling with dissipation. In the conve
tional treatment of the fluctuation-dissipation theorem in E
~25!, the vacuum fluctuation is often subtracted away by s
ply saying that it is not observable@14#. In contrast, the term
corresponding to the vacuum fluctuation plays a central r
in our application since it describes the spontaneous em
sion of effective excitations into the dissipative medium; it
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thus the only effect remaining at the vanishing temperatu
Our dispersion relation for the self-energy~35!, which is

essentially equivalent to the second-order perturbation the
in linear response approximation, then gives rise to a cha
in the real part of the tunneling energy splitting~which is the
order parameter of quantum coherence!. Our formulas natu-
rally give rise to the dilute instanton results for the ord
parameter both at finite and vanishing temperature@12#. In
this sense our attempt to reproduce the physical results o
Caldeira-Leggett model without referring to an explic
model Lagrangian has been successful at least in the ana
of quantum coherence at bothT50 @10# andTÞ0.

Of course, the formulation of Caldeira and Leggett@11# is
flexible enough and it is applicable to many other physi
contexts. Nevertheless, for those who wonder if one can a
lyze some physical processes without an infinite numbe
oscillators, our reformulation of the quantum tunneling w
dissipation on the basis of the fluctuation-dissipation theo
and dispersion relations may give an answer by show
such possibility as well as limitations.

Another purpose of the present paper is to present a
eralization of the fluctuation-dissipation theorem of Calle
Welton to the case of fermionic dissipation~or fluctuation!.
Since fermions are basically quantum mechanical, the no
of fermionic dissipation is characteristically quantum m
chanical. We emphasize that a mere excitation of a ferm
from one state to another does not imply fermionic fluctu
tion in the present context; the force fields or currents
volved should be fermionic, though the fermionic excitati
may be an effective one or a quasiparticle. In full quant
theory, both the bosonic and fermionic modes can be equ
.
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added to or removed from the system we are intereste
and a fully quantum mechanical fluctuation-dissipation th
rem should be able to handle the fermionic fluctuation a
consequently, fermionic dissipation.

In the context of condensed matter physics, we usu
measurebosonicquantities such as voltage or electric curre
even if the elementary process involves the transfer of
mions. In such a case, the conventional bosonic fluctuat
dissipation theorem is applicable. It is our hope that a pr
erly defined treatment of elementary transfer processes
lead to an application of the notion of fermionic fluctuatio
or dissipation in the future.

As for the physical phenomena where the fermion
fluctuation-dissipation theorem may have some relevan
we note the fermion emission from a black hole@16# and the
fermion production in an accelerated frame@17#. The notion
of quantum noise plays a fundamental role in the analyse
these processes and thus the fermionic fluctuation-dissipa
theorem may provide a convenient framework to descr
some general features of these interesting quantum
cesses. Another area of physics where fermionic fluctua
may play a role is the theory of supersymmetry~or boson-
fermion symmetry! @18#. The basic current of supersymme
try is fermionicand thus the thermal average of a product
such currents~or related gravitino fields! inevitably leads to a
notion of fermionic fluctuation. Though we do not know
specific application of the fermionic fluctuation-dissipatio
theorem at this moment, our formulation may turn out to
useful in future analyses of supersymmetry in a multiparti
thermal setting, where supersymmetry is known to be ine
tably broken by thermal effects.
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